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ABSTRACT: Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important
weather phenomena that often threaten society through heavy precipitation and strong winds. Despite their potentially
vital role in global and regional hydrological cycles, their contributions to long-term mean and extreme precipitation have
not been systematically explored at the global scale. Using observational and reanalysis data, and NOAA’s Geophysical
Fluid Dynamics Laboratory’s new high-resolution global climate model, we quantify that despite their occasional (13%)
occurrence globally, AR, TS, and MCS days together account for ∼55% of global mean precipitation and ∼75% of extreme
precipitation with daily rates exceeding its local 99th percentile. The model reproduces well the observed percentage of
mean and extreme precipitation associated with AR, TS, and MCS days. In an idealized global warming simulation with a
homogeneous SST increase of 4 K, the modeled changes in global mean and regional distribution of precipitation corre-
spond well with changes in AR/TS/MCS precipitation. Globally, the frequency of AR days increases and migrates toward
higher latitudes while the frequency of TS days increases over the central Pacific and part of the south Indian Ocean with a
decrease elsewhere. The frequency of MCS days tends to increase over parts of the equatorial western and eastern Pacific
warm pools and high latitudes and decreases over most part of the tropics and subtropics. The AR/TS/MCS mean precipi-
tation intensity increases by ∼5% K21 due primarily to precipitation increases in the top 25% of AR/TS/MCS days with
the heaviest precipitation, which are dominated by the thermodynamic component with the dynamic and microphysical
components playing a secondary role.

KEYWORDS: Atmospheric river; Extreme events; Precipitation; Severe storms; Tropical cyclones; Mesoscale systems;
General circulation models

1. Introduction

Atmospheric rivers (ARs), tropical storms (TSs), and meso-
scale convective systems (MCSs) are spectacular weather phe-
nomena that often pose a significant threat to society through
heavy precipitation, strong winds, and associated disasters (e.g.,
Zhu and Newell 1994; Ralph et al. 2019; Emanuel 2018; Knut-
son et al. 2019, 2020; Houze 2004, 2018). Despite their poten-
tially vital role in global and regional hydrological cycles, the
contributions of ARs, TSs, and MCSs to long-term global and
regional mean and extreme precipitation have not been system-
atically quantified at the global scale from both observations
and models. Previous studies focus only on individual phenom-
ena often over limited regions and/or seasons (e.g., Ralph et al.
2006; Lavers and Villarini 2013, 2015; Dettinger 2013; Nayak
and Villarini 2017; Prat and Nelson 2013; Cheeks et al. 2020)
with a few TS studies covering the entire tropical region (e.g.,
Jiang and Zipser 2010; Prat and Nelson 2016). From the obser-
vational point of view, this was due primarily to limited mea-
surement, data availability, and a short observational record.
However, a recent effort (Beck et al. 2019) combining many sat-
ellite observations and reanalysis data provided a Multi-Source
Weighted-Ensemble Precipitation (MSWEP-v2) dataset that
provides fine spatial and temporal resolution data with global
coverage for multiple decades (1979–present). This new obser-
vational estimate of global high-frequency precipitation rate
along with reanalysis data, the observed TS tracks, and

multisatellite measurement of infrared brightness temperature
would make it possible to simultaneously quantify AR-, TS-,
and MCS-associated precipitation and extreme precipitation at
global scale.

From the numerical modeling point of view, the lack of these
kinds of studies is due at least in part to the fact that typical
global climate models (GCMs), which are designed to run for
many decades to a century, do not have sufficient horizontal
resolution to realistically simulate all of these phenomena.
While future increases in modeling resolution will continue to
improve GCM fidelity in simulating these phenomena, recent
efforts at NOAA’s Geophysical Fluid Dynamics Laboratory
(GFDL) suggest that even at a moderately high horizontal reso-
lution (e.g., 50 km) some GCMs can reasonably well simulate
many aspects of the observed ARs (Zhao 2020), TSs (Zhao
et al. 2009, 2010; Murakami et al. 2020), and even MCSs (Dong
et al. 2021), including their climatology and variability. How-
ever, the detection and tracking algorithms for ARs, TSs, and
MCSs do not typically involve the precipitation field (e.g., Guan
and Waliser 2015; Shields et al. 2018; Zhao et al. 2009; Horn
et al. 2014; Hodges et al. 2000; Huang et al. 2018; Dong et al.
2021). In comparison to storm frequency, the analysis of storm-
associated precipitation has received much less attention. Exist-
ing analyses of storm-associated precipitation focus mostly on
individual phenomena often over limited regions of the globe
(e.g., Slinskey et al. 2020; Gao and Leung 2016; Hagos et al.
2016; Knutson et al. 2010, 2020; Prat and Nelson 2013, 2016;
Scoccimarro et al. 2014). To the best of the author’s knowledge,
the combined contributions of these storms to global andCorresponding author: Ming Zhao, Ming.Zhao@noaa.gov
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regional mean and extreme precipitation have never been stud-
ied and documented.

The goal of this study is to use observational and reanalysis
data as well as the GFDL new high-resolution GCM, which
has been demonstrated to realistically simulate ARs (Zhao
2020), TSs (Murakami et al. 2020), and MCSs (Dong et al.
2021), to explore the precipitation characteristics associated
with ARs, TSs, and MCSs in the present climate as well as
their response to global warming. In particular, we attempt to
address the following questions. 1) How much of present-day
climatological precipitation and extreme precipitation may be
attributed to ARs, TSs, and MCSs? 2) How may the mean
and extreme precipitation associated with ARs, TSs, and
MCSs change in a warmer climate? 3) How may we under-
stand the change in mean and extreme precipitation associ-
ated with ARs, TSs, and MCSs? Below section 2 describes the
model, the simulations, the observational data, and the meth-
ods for detecting AR, TS, and MCS days. Section 3 presents
the AR/TS/MCS-associated precipitation and extreme precip-
itation in the present climate. Section 4 explores the changes
in AR/TS/MCS-associated precipitation in a warmer climate.
Section 5 provides a summary.

2. The model, simulations, storm detection methods, and
observational data

The model (referred to as C192AM4; Zhao 2020) we utilized
here is a high-resolution version of the GFDL atmospheric
model version 4 (AM4). AM4 (Zhao et al. 2018a,b) has been
used in GFDL’s new physical climate model CM4 (Held et al.
2019) and Earth System Model ESM4 (Dunne et al. 2020) for
GFDL’s participation in phase 6 of the Coupled Model Inter-
comparison Project (CMIP6; Eyring et al. 2016). In addition,
AM4 has also been used in GFDL’s Seamless system for Pre-
diction and Earth system Research (SPEAR; Delworth et al.
2020). C192AM4 employs a cubed-sphere topology for its
atmospheric dynamical core with 192 3 192 grid boxes per
cube face corresponding to roughly ∼50-km horizontal grid
spacing. C192AM4 has been used for GFDL’s participation in
the CMIP6 High Resolution Model Intercomparison Project
(Haarsma et al. 2016).

For this study, we analyzed three C192AM4 simulations.
The first is a present-day simulation for the period of
1979–2014 (referred to as PRESENT), with the model forced
by the observed daily SSTs, sea ice concentrations, and radia-
tive gases following the CMIP6 HighResMIP specifications.
This simulation corresponds to the HighResMIP Tier 1 high-
resSST-present simulation (Haarsma et al. 2016). This simula-
tion is used to evaluate the model’s ability in simulating ARs,
TSs, MCSs, and their associated precipitation and extreme
precipitation in comparisons with the observations. In addi-
tion, we have conducted two 100-yr simulations for studies of
storm associated precipitation under an idealized global warm-
ing scenario. The first (referred to as CLIMO) is a 100-yr pre-
sent-day climatological simulation, with the model forced by
the observed monthly varying climatological SSTs and sea ice
concentrations (averaged for the 1980–2014 period) and with

the radiative gases and aerosol emissions fixed at the year
2010 condition. Thus, this simulation does not contain any
interannual variabilities of forcings. The second simulation is
an idealized global warming experiment that is identical to
CLIMO except with SSTs uniformly increased by 4 K
(referred to as P4K). The warming simulation is used to
explore the possible change in AR, TS, and MCS associated
precipitation and extreme precipitation in a future warmer cli-
mate. All model outputs are first interpolated from the mod-
el’s native cubed-sphere grid to a latitude–longitude (lat–lon)
grid. For TS detection and tracking, we used the model output
at 0.5° 3 0.625° (lat 3 lon) resolution, which is the typical res-
olution we use for C192AM4. For all other analysis, we regrid
the model data to 0.75° 3 0.75° (lat 3 lon) resolution. This
slightly lower resolution was previously chosen to facilitate the
model’s comparison of AR statistics with the ECMWF interim
reanalysis (ERA-Interim) results at the same resolution (Zhao
2020). It also helps to reduce the overall volume of data, which
becomes very large for the 100-yr simulations (i.e., CLIMO
and P4K) with 6-hourly outputs.

The AR detection method is identical to that used in Zhao
(2020) and Guan and Waliser (2015). The algorithm uses 6-
hourly outputs of zonal and meridional vertically integrated
vapor transport (IVT) to compute the IVT magnitude at each
grid cell, and it does not track individual ARs over time so that
each map of IVT magnitude is treated independently. The algo-
rithm starts with thresholding each instantaneous IVT field
based on the 85th percentile specific to each season (i.e., percen-
tile calculated over all time steps during the 5 months centered
on that month) and grid cell for each experiment with a fixed
lower limit of 100 kg m21 s21. Zhao (2020) compared the global
distribution of the 85th percentile of IVT magnitude derived
from the PRESENT, CLIMO, and P4K simulations (see Fig. 9
in Zhao 2020). While the difference is very small between
CLIMO and PRESENT, there is a huge increase from CLIMO
to P4K due to the 4-K increase in SSTs. The use of IVT 85th
percentile from each experiment for thresholding its IVT fields
would automatically and consistently take into account the
change in background state of moisture transport in P4K. We
refer to Zhao (2020) for a detailed discussion of the rationale of
using the warmer climate’s IVT 85th percentile for detecting
ARs in the warmer climate simulation. A similar method has
also been used in literature (e.g., Shields and Kiehl 2016). After
thresholding each IVT field, the identified AR candidates are
then checked for the geometry requirement of length . 2000
km, length-to-width ratio . 2, and other considerations indica-
tive of the AR conditions. These include a requirement of
appreciable poleward transport of moisture (.50 kg m21 s–1)
and coherence of IVT direction (i.e., the fraction of AR grid
cells with local IVT directed within 45° of the AR’s mean IVT
direction must be greater than 0.5). The AR detection algo-
rithm provides 6-hourly output of AR objects as well as some
basic measurements of each detected AR such as length, width,
mean zonal and meridional IVT, and the coherence of IVT
direction (Guan and Waliser 2015). We use the AR objects to
identify grid cells that experience AR conditions, which are fur-
ther utilized to determine the AR days.
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The TS detection method follows that used in Zhao et al.
(2009, 2012). To give a brief summary, we first identify poten-
tial cyclones by locating local maximums of 850-hPa relative
vorticity exceeding a threshold value (3.5 3 1025 s21) and
defining their nearby local minimums of sea level pressure as
cyclone centers using 6-hourly instantaneous fields of 850-hPa
relative vorticity and sea level pressure. We then track indi-
vidual tropical cyclones (TCs) using the 6-hourly cyclone loca-
tions. The latitude of the first point (genesis location) of a TC
track must be within 30°S–30°N. After a TC track is identified
it is categorized as a TS if it satisfies all of the following three
criteria for at least 3 days (not necessarily consecutive): 1)
maximum surface wind speed $ 17 m s21, 2) maximum 850-
hPa relative vorticity $ 1.6 3 1024 s21, and 3) warm-core
temperature anomaly $ 2 K. We assume the 12° 3 12° (lat 3
lon) region centered at each TS’s center location as the area
experiencing a TS condition.

The MCS detection method follows that used in Dong et al.
(2021) and Huang et al. (2018). We first derive the brightness
temperature Tb from the top of atmosphere (TOA) outgoing
longwave radiation (OLR) based on the following equations
(Dong et al. 2021; Ellingson and Ferraro 1983):

TF � Tb(a1bTb), (1)

OLR � sT4
F , (2)

where TF is the flux equivalent brightness temperature, s =
5.67 3 1028 W m22 K24 is the Stefan–Boltzmann constant,
and a and b are empirical coefficients based on regression
(Ohring et al. 1984). Following Ellingson and Ferraro (1983)
and Dong et al. (2021), we set a = 1.228 and b = 21.106 3

1023 K21. The algorithm first thresholds each 6-hourly instan-
taneous field of Tb by removing any grid cells with Tb values
greater than 233 K (e.g., Huang et al. 2018; Dong et al. 2021).
Because the data resolution is 0.75° 3 0.75° (lat 3 lon), which
is already larger than the smallest size of MCSs, we do not
further apply a size threshold for MCSs and simply consider
any grid cells whose Tb values are below this threshold as
regions experiencing MCS conditions.

It is worth noting that Dong et al. (2021) studied MCSs only
over the tropical regions. For MCSs over middle and high lati-
tudes, the use of a single absolute value of Tb threshold is not
sufficient in detecting MCSs due to the much smaller values of
climatological Tb at high latitudes. Thus, we include an addi-
tional criterion by removing any grid cells whose Tb values are
not 30 K smaller than the zonal mean values of the climatologi-
cal Tb at the same latitude and same time of year—that is,

Tb(l,f, t)$ [Tb(l,f, t)]230K, where the overbar and square
bracket denote respectively an average across all years and all
longitudes l at a given latitude f and time of year s so that

[Tb(l,f, t)] is a function of f and s only. The climatological Tb

[i.e., Tb(l,f, t)] is computed by taking a long-term (1979–2014
for PRESENT, 100 years for CLIMO and P4K) average of the
6-hourly Tb field at each location (l, f) and time of year s. This
additional criterion has little impact over the tropics because the

tropical zonal mean values of climatological Tb {i.e.,

[Tb(l,f, s)]} are always at least 30 K greater than 233 K. In
short, we consider any grid cells whose Tb values satisfy the
above two criteria—namely, Tb(l, f, t) # 233 K and

Tb(l,f, t), [Tb(l,f, t)]230K—as regions in MCS conditions.
Finally, for any given grid cells, if at least one AR/TS/MCS

condition is identified from the 6-hourly data during a calen-
dar day and the daily surface precipitation exceed 1 mm
day21, the day is subsequently identified as an AR/TS/MCS
day. We also make AR, TS, and MCS days mutually exclusive
by setting a priority for each identified phenomenon. In par-
ticular, for any given grid cells, if a day satisfies multiple con-
ditions, it is first considered as a TS day, then an AR day, and
finally an MCS day. This priority choice is partly due to our
confidence level for detecting TS, AR, and MCS days. The
overlaps between ARs and TSs are generally small due to
their large differences in main development regions (i.e., mid-
latitudes vs tropics) although they could be significant during
summer and fall seasons at the latitude of TS extratropical
transition. Among the three phenomena, we have a relatively
lower confidence for detecting MCS; thus, we consider a day
as an MCS day only when it is neither an AR nor a TS day.
With this priority, for any given grid cells, a calendar day is
classified as one of the following four categories: AR day, TS
day, MCS day, or nothing. Using this classification, we condi-
tionally sample daily precipitation fields as well as other mete-
orological variables to explore the contributions of AR, TS,
and MCS days to global and regional mean and extreme pre-
cipitation as well as their changes with global warming.

The identical methods described above are also used to
detect the observed AR, TS, and MCS days and their associ-
ated precipitation. The observed daily precipitation data
(1979–2014) are from Beck et al. (2019) (referred to as
MSWEP-v2). The observed 6-hourly AR objects are derived
from the ERA-Interim reanalysis data using the same AR
detection method described above (Zhao 2020). The global
TS track data are obtained from the International Best Track
Archive for Climate Stewardship (IBTrACS) (Knapp et al.
2010). To detect MCS days, we use the Cloud Archive User
Service (CLAUS) multisatellite infrared brightness tempera-
ture dataset (Hodges et al. 2000), which provides 3-hourly
global coverage of Tb for the 1985–2008 period. Except that
the climatological Tb is computed using the shorter observa-
tional record, the MCS detection method is identical to that
described above. All the observational data are first regridded
to the same resolution (i.e., 0.75° 3 0.75°) as ERA-Interim to
facilitate comparisons with the model. Below we describe the
results from the observations and the model’s present-day
simulation.

3. AR/TS/MCS precipitation in present climate

We first present in Fig. 1 the geographical distribution of
the occurrence frequency of the observed and modeled AR,
TS, and MCS days. The global and annual mean frequencies
of the AR, TS, and MCS days are, respectively, 8.33%,
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0.72%, and 4.28% from the observations and 7.58%, 0.99%,
and 4.37% from the model. Thus, they may be considered rel-
atively rare events globally. Regionally, they may occur more
frequently. For example, the maximum frequency of AR days
over the midlatitude storm track regions is around 20%–25%
while the TS and MCS days tend to occur more frequently in
the tropical and subtropical regions with the MCS days
appearing ∼30% of the time over parts of the equatorial west-
ern Pacific, Africa, and the South American Amazon basin.
TS days occur most frequently over the tropical off-equatorial
TC main development regions (MDR) where SSTs are
warmer. Globally, the frequency of AR, TS, and MCS days
together amount to ∼13%, which is roughly one-third of the
frequency of all wet days (defined here as daily precipitation

$ 1 mm day21) in both the observations and the model (see
Figs. 1a,e).

While the model broadly captures the observed geographi-
cal distribution of the frequency of AR/TS/MCS days, it also
displays significant regional biases. For example, the model
tends to overproduce the frequency of TS days over the west-
ern Pacific and underestimate them over the North Atlantic
and the eastern Pacific, a typical bias seen in most high-resolu-
tion GCMs (e.g., Shaevitz et al. 2014). The model also slightly
underestimates annual AR frequency over midlatitude storm
track regions. For MCSs, the model overproduces annual fre-
quencies over the western Pacific, especially to the east of the
Philippines, while underestimating them over the equatorial
south Indian Ocean. Over the Atlantic and North American

FIG. 1. (a) Geographical distribution of the occurrence frequency (%) of the annual wet days (defined as daily
precipitation rate . 1 mm day21) based on MSWEP-v2 precipitation dataset. (b)–(d) As in (a), but for the annual
frequency of AR (based on ERA-Interim), TS (based on IBTrACS), and MCS (based on CLAUS) days, respec-
tively. The global area-weighted mean value is shown on the top of each panel. (e)–(h) As in (a)–(d), but for the
model results from PRESENT.
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sector, the model tends to slightly overestimate MCS fre-
quency over the Caribbean Sea and underestimate them over
the Great Plains in the United States. Many of these biases
can be traced to the model’s biases in tropical climatological
precipitation and large-scale convective overturning motion
instead of the MCS detection method used. Despite these
regional biases, the modeled global annual frequency of MCS
days (4.37%) is remarkably close to the observational esti-
mate (4.28%).

In general, the observed and modeled spatial distributions in
annual frequency of AR/TS/MCS days are consistent with pre-
vious studies of AR/TS/MCS frequency (e.g., Guan andWaliser
2015; Jiang and Zipser 2010; Prat and Nelson 2013, 2016; Shae-
vitz et al. 2014; Huang et al. 2018; Feng et al. 2021) although
these studies often define storm frequencies differently and one

must take into account these differences when comparing them.
For example, we define a calendar day as an AR/TS/MCS day
for any given grid cell if at least one AR/TS/MCS condition is
identified from the 6-hourly data during that calendar day.
However, previous AR studies (e.g., Guan and Waliser 2015;
Zhao 2020) used 6-hourly data to compute the frequency of
AR conditions, which should yield smaller AR frequency than
the frequency of AR days defined here. Indeed, when we used
6-hourly data to compute the AR frequency, we obtained the
same results as in Guan and Waliser (2015) and Zhao (2020).
For TS frequency, one also needs to take into account the differ-
ences in definitions of TS size (i.e., the surrounding area being
impacted by a TS) when comparing the present study with previ-
ous studies. For example, we define the 12° 3 12° (lat 3 lon)
region centered around each 6-hourly TS track location as the

FIG. 2. (a) Geographical distribution of the observed annual mean precipitation rate (mm day21) based on
MSWEP-v2 precipitation dataset. (b)–(d) As in (a), but for the annual mean precipitation from AR, TS, and MCS
days, respectively. The global area-weighted mean value is shown on the top of each panel. (e)–(h) As in (a)–(d), but
for the model results from PRESENT.

Z HAO 48315 JANUARY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/29/22 06:37 PM UTC



area experiencing TS conditions while previous studies used TS
track density on a certain number of grids [e.g., 1° 3 1° in Jiang
and Zipser (2010) and 5° 3 5° in Shaevitz et al. (2014)] to mea-
sure annual TS frequency. These differences in computing
annual TS frequency must be considered when comparing our
results with the previous studies. In comparison with AR and TS
studies, global-scale investigations of annual MCS frequency
have been lacking especially for GCM studies due presumably
to the models’ deficiencies in simulating MCSs. Nevertheless,
our model simulated annual frequency of MCS days compares
reasonably well with the observational estimates (Fig. 1d) using
an identical method for detecting MCS days as well as two
recent observational studies that provided estimates of annual
MCS frequency in the tropical (Huang et al. 2018) and
60°S–60°N regions (Feng et al. 2021).

Despite their occasional occurrence globally, Fig. 2 shows
that the AR, TS, and MCS days together account for roughly
55% of the global annual mean precipitation in both the
observations and the model. Individually, AR, TS, and MCS
days account for respectively 25% (24%), 4.1% (5.8%), and
24% (25%) of the global mean precipitation in the

observations (model). Regionally, AR-, TS-, and MCS-associ-
ated precipitation can each contribute up to 50%–60% of the
local annual mean precipitation. For example, Fig. 3 shows
that roughly 40%–60% of the annual precipitation over the
NH and SH midlatitude storm track regions are from AR
days. In parts of the eastern or western Pacific TC MDR
regions, TSs can contribute up to 40%–50% their local annual
precipitation. In many parts of the deep tropics, the MCS
days account for 50%–60% of their annual precipitation. The
model captures reasonably well the observed regional distri-
bution of precipitation that is associated with AR, TS, and
MCS days with a slight global underestimate (overestimate)
of the AR (TS and MCS) precipitation. These results are also
broadly in agreement with previous studies of AR/TS/MCS-
associated precipitation using satellite observations (e.g.,
Jiang and Zipser 2010; Prat and Nelson 2013, 2016; Feng et al.
2021).

The AR-, TS-, and MCS-associated precipitation is essential
for not only the geographical distribution of long-term mean
precipitation but also the annual cycle and interannual variabil-
ity of global mean daily precipitation. Figures 4a and 4c show

FIG. 3. (left) As in Figs. 2b–d, but for the percentage contribution of observed annual mean precipitation rate (%) from (a) AR, (b) TS,
and (c) MCS days. (d)–(f) As in (a)–(c), but for the model results from PRESENT.
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the observed and modeled climatological annual cycle of global
mean daily precipitation, which is roughly equally affected by
the storm days (i.e., AR, TS, and MCS together) and nonstorm
days (i.e., the remaining days) with a correlation coefficient of
∼0.7 between the total and storm-associated precipitation. Fig-
ures 4b and 4d further show that the interannual variation of
global mean daily precipitation is dominated nearly entirely by
storm days in both observations and the model. The correlation
coefficient between the anomalous total precipitation and the
anomalous precipitation associated with storm days is 0.81 (0.84)
in the observations (model). In contrast, we find no correlation
between the anomalous total precipitation and the anomalous
precipitation associated with nonstorm days.

To quantify the contribution of ARs, TSs, and MCSs to daily
precipitation extremes, we present in Fig. 5 the geographical

distribution of the 99th percentile of daily precipitation rate and
the occurrence frequency of the daily precipitation that exceeds
the 99th percentile locally from the AR, TS, and MCS days for
both observations and the model. Compared to the observa-
tions, the model tends to produce higher 99th percentile values
of daily precipitation over the deep tropics, especially tropical
Africa. Despite the model’s systematical bias, it well reproduces
the observed frequency of extreme daily precipitation (i.e., daily
precipitation exceeding the 99th percentile) associated with
AR, TS, and MCS days at both regional and global scales.
Globally, the AR, TS, and MCS days together account for
roughly 75% of extreme precipitation in both observations
(76.7%) and the model simulation (74.3%). Regionally, these
weather phenomena together account for 80%–100% of
extreme daily precipitation over most parts of the world. The

FIG. 4. (a) Observed (based on MSWEP-v2) climatological global mean daily precipitation rate (averaged over the
1979–2014 period) for each day of the year and its contributions from the storm (i.e., AR, TS, and MCS days
together) and nonstorm days (i.e., all other days). Plotted are anomalies from their corresponding annual means,
which are denoted in the legend. The legend also shows the correlation coefficient between storm/nonstorm day pre-
cipitation and total precipitation. (b) Scatterplots of the observed interannual anomalous global mean daily precipita-
tion (ordinate) vs the interannual anomalous global mean daily precipitation from the (red dots) storm and (blue
dots) nonstorm days (abscissa). The interannual anomalous precipitation is computed by subtracting the climatologi-
cal values of daily precipitation [see (a)] from the global mean daily precipitation for each day over the 1979–2014
period. The correlation coefficients are denoted in the legend with the solid lines showing the orthogonal linear
regressions. (c),(d) As in (a) and (b), but for the model results from PRESENT.
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exceptions are typically regions where the precipitation 99th
percentile is low (see the blue colored regions in Figs. 5a,e),
including parts of the subsiding branch of Hadley and Walker
circulations and the polar regions. Thus, Fig. 5 reveals the essen-
tial role of ARs, TSs, and MCSs in generating disastrous
extreme precipitation around the globe, consistent with many
previous studies (e.g., Lavers and Villarini 2013, 2015; Prat and
Nelson 2013, 2016; Houze 2018; Feng et al. 2021).

However, it should be emphasized that not all AR/TS/MCS
days are equal. Figures 6–8 show respectively the daily precip-
itation rate averaged over all, the 25% heaviest precipitation,
and the 25% lightest precipitation AR, TS, and MCS days
from observations and the model. The model tends to overes-
timate the AR-, TS-, and MCS-associated mean and heavier
precipitation and underestimate their associated weaker pre-
cipitation (see also Table 1). Despite this model bias, both the
model and the observations show that the average precipita-
tion of the 25% heaviest precipitation days are about 2–3

times larger than their mean precipitation and 10–20 times
larger than the average of the 25% lightest precipitation days.
Table 1 further reveals that more than 88% (67%) of the total
TS precipitation comes from their 50% (25%) heaviest precip-
itation days, which is true for both observations and the model.
For AR and MCS days, the percentages are lower; in particu-
lar, more than 82% (58%) of AR-associated and 77% (52%)
of MCS-associated precipitation results from their correspond-
ing 50% (25%) heaviest precipitation days. This suggests that
the distribution of daily precipitation among the AR, TS, and
MCS days is strongly positively skewed, with their 25% heavi-
est precipitation days playing the dominant role in both mean
and extreme precipitation in the present climate.

In general, the model’s quality in simulating AR-, TS-, and
MCS-associated precipitation in the present climate justifies its
use for exploring possible changes in AR/TS/MCS-associated
mean and extreme precipitation in a warmer climate. Below
we present the model results derived from the pair of 100-yr

FIG. 5. (a) Geographical distribution of the 99th percentile of observed daily precipitation rates (mm day21) based
on MSWEP-v2 precipitation dataset. (b)–(d) As in (a), but for the occurrence frequency (%) of daily precipitation
that exceeds the 99th percentile [see (a)] locally from AR, TS, and MCS days, respectively. The global area-weighted
mean value is shown on the top of each panel. (e)–(h) As in (a)–(d), but for the model results from PRESENT.
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simulations using CLIMO and P4K. The use of CLIMO and
P4K allows us to focus on the effect of global mean SST warm-
ing without worrying about future changes in SST variability
(both spatial patterns and temporal variations) and other forc-
ing agents, which are highly uncertain compared to the global
mean warming. It also helps to improve the model’s statistics
in extreme precipitation because the simulations do not con-
tain interannual variability of forcings and each year can be
considered as an independent sample from the present or
warmer climate. The AR, TS, and MCS frequency and their
associated precipitation in CLIMO are generally very similar
to PRESENT described above. Table 1 includes a detailed
comparison of the global frequency of AR/TS/MCS days

and their associated precipitation between PRESENT and
CLIMO.

4. Changes in AR/TS/MCS precipitation in a
warmer climate

To explore the precipitation response to global warming
we show in Fig. 9 the geographical distribution of the changes
in annual mean precipitation rate and its contributions from
the AR, TS, and MCS days. Globally, the model produces
roughly a 2.85% K21 increase in global mean precipitation,
of which roughly 67% comes from the AR, TS, and MCS
days collectively. The significantly larger increase in global

FIG. 6. Geographical distribution of the observed daily precipitation rate (mm day21) averaged over all (a) AR, (b) TS, and (c) MCS
days. Grid cells with total number of AR/TS/MCS days less than 30 are masked out. The AR/TS/MCS frequency-weighted global mean

precipitation from all AR/TS/MCS days—that is, [Pr,allX ] �
�
y

�
x
Pr,allX (x,y)FallX (x,y)dxdy

/�
y

�
x
FallX (x,y)dxdy, where X = AR/TS/MCS

days, and Pr,allX and FallX denote respectively the mean precipitation and frequency averaged from all AR/TS/MCS days at each location
(x, y)—is shown on the top of each panel. (d)–(f) As in (a)–(c), but for the model results from PRESENT.
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mean precipitation compared to the typical values (∼2%
K21) seen in coupled simulations (Held and Soden 2006) is
because we did not increase the atmospheric CO2 concentra-
tion in the P4K warming experiment. A doubling of the
atmospheric CO2 concentration without changing SSTs will
produce a significant reduction of global mean precipitation
due to a reduced atmospheric cooling rate. This is often
referred to as the direct effect of CO2 as opposed to its effect
on SSTs in coupled simulations (Held and Zhao 2011; Bony
et al. 2013). Individually, the AR-, TS-, and MCS-associated
global mean precipitation increases by 5.44%, 1.47%, and
2.03% K21 respectively (see Table 1). These global and
annual mean increases in precipitation are produced by their
changes in both frequency and intensity in precipitation.
Regionally, the spatial distribution of changes in annual
mean precipitation is also well captured by the total changes
in AR-, TS-, and MCS-associated precipitation with the net
changes being dominated by the AR days in the middle and

high latitudes and by the TS and MCS days in the tropical
and subtropical regions.

To understand the regional change in AR-, TS-, and MCS-
associated precipitation, Fig. 10 shows the changes in fre-
quency of AR/TS/MCS days (Figs. 10a–c) as well as the
changes in mean precipitation averaged over all AR/TS/MCS
days (Figs. 10d–f). Except for TS-associated precipitation in
the equatorial northwestern Pacific near the Philippine Sea,
the spatial patterns of changes in AR/TS/MCS-associated
annual precipitation appears to correlate well with their
changes in annual frequency. Globally, the frequency of AR
days increases slightly by 1.22% K21 (0.093%/7.6%) while the
frequency of TS and MCS days decreases by 2.86% K21

(20.027%/0.96%) and 2.05% K21 (20.099/4.64) respectively
(see Table 1 for more details). Regionally, the maximum fre-
quency of AR days tends to migrate poleward while the fre-
quency of TS days tends to increase over the central Pacific
and part of the south Indian Ocean with a decrease elsewhere.

FIG. 7. As in Fig. 6, but for daily precipitation rate averaged over the local 25% heaviest precipitation AR, TS, and MCS days.
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The frequency of MCS days tends to increase over parts of
the equatorial western and eastern Pacific warm pools and
high latitudes and decrease over most parts of the tropics and
subtropics, with the largest reduction over the tropical land-
covered regions.

While the general increase in global occurrence frequency
of AR conditions in warmer climates is consistent with previ-
ous studies (e.g., Espinoza et al. 2018), Zhao (2020) pointed
out that the increase in previous studies is likely to be signifi-
cantly overestimated due to their use of the historical IVT
threshold for detecting ARs in warmer climates. This will
impact AR-associated precipitation. The global reduction in
TS frequency with warming has been reported in many previ-
ous studies (e.g., Knutson et al. 2010, 2020). However, regional
changes in TS frequency remain highly uncertain. For exam-
ple, Villarini and Vecchi (2012) pointed out large uncertainties
in twenty-first-century projection of North Atlantic (NA) TS
frequency due to model uncertainties in projecting future SST
warming patterns, especially the relative SST warming over

the tropical Atlantic (defined as the difference between tropi-
cal Atlantic and tropical mean SST warming). Because of the
limitations of P4K, which is designed to simulate only the
effects of global mean SST warming, one must be cautious
about comparing regional changes in storm frequency between
the present study and either future projections or any
observed trends, which may be affected by SST warming pat-
terns as well as changes in forcing agents. For example, Feng
et al. (2016) found an increase in springtime total and extreme
rainfall in the central United States over recent decades, which
was dominated by MCSs, while our model shows a reduction
in annual frequency of MCS days over the United States in
response to global uniform warming. It is however unclear if
the observed increase in springtime MCS is due to global
mean SST warming, a specific warming pattern, or changes in
forcing agents during this period. It is also unclear if the
observed increase in MCS still exists when averaged over
the entire year. An investigation of these differences is beyond
the scope of the present paper.

FIG. 8. As in Fig. 6, but for daily precipitation rate averaged over the local 25% lightest precipitation AR, TS, and MCS days.
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To quantify the change in AR/TS/MCS precipitation intensity
with global warming, Figs. 10d–f show the percentage changes in
daily precipitation rate averaged over all AR/TS/MCS days.
Note that the regions with the total number of AR/TS/MCS days
less than 30 in CLIMO or P4K and the regions where the precipi-
tation changes are not statistically significant at a 95% confidence
level (based on Z tests) are masked out. There is a broad
increase in AR/TS/MCS precipitation intensity around the globe,
which is in sharp contrast with the changes in AR/TS/MCS fre-
quency, which exhibit regions of increases or decrease with simi-
lar magnitudes. We may compute global mean change in AR/
TS/MCS precipitation intensity in two different ways. The first is
a simple global area-weighted mean over AR/TS/MCS regions,
which are respectively 4.75%, 8.67%, and 5.19% K21 for AR,
TS, and MCS days. The second is the percentage change in AR/
TS/MCS frequency weighted global mean precipitation from
all AR/TS/MCS days—that is, the percentage change in

[Pr,allX ] �
�
y

�
x
Pr,allX (x,y)FallX(x,y)dxdy=

�
y

�
x
FallX(x,y)dxdy,

whereX = AR/TS/MCS days and Pr,allX and FallX denote respec-
tively the mean precipitation and frequency averaged from all AR/
TS/MCS days at each location (x, y)—which yields respectively
3.94%, 5.27%, and 4.63%K21 for all AR, TS, andMCS days.

The increases in AR/TS/MCS mean precipitation are due
primarily to the changes in its 25% heaviest precipitation
days. To illustrate this, Fig. 11 shows the percentage changes
in the 25% heaviest precipitation as well as the 25% lightest
precipitation AR/TS/MCS days between P4K and CLIMO.
The 25% heaviest precipitation AR, TS, and MCS days gen-
erally display a similar or larger percentage increase in precip-
itation intensity compared to the change of AR/TS/MCS
mean precipitation with slightly larger global mean values
(see the numbers on the top of each panel). In contrast, the
25% lightest precipitation AR, TS, and MCS days exhibit a
much smaller increase or even a decrease in many regions.
The global area-weighted (frequency-weighted) mean are
respectively 0.37% (0.83%), 2.4% (1.97%), and 20.6%
(20.73%) K21 for these AR, TS, and MCS days. Thus, this
result suggests a change in the character of storm-associated
precipitation in response to global warming with heavy pre-
cipitation becoming heavier while weak precipitation remains
relatively unchanged.

Since the 25% heaviest precipitation AR/TS/MCS days tend
to dominate the response of both mean and extreme precipita-
tion in warmer climates below we try to understand their
response through the changes in their dynamic, thermodynamic,

TABLE 1. Global annual frequency of AR/TS/MCS days and their associated precipitation from observations and the model’s
PRESENT, CLIMO, and P4K simulations; [Pr ] denotes global annual mean precipitation (mm day21), which is followed by its
contributions from AR/TS/MCS days with the numbers in parentheses indicating the percentage of [Pr ] from AR/TS/MCS days.
Also, [Pr,allX ] (X = AR/TS/MCS days) denotes AR/TS/MCS frequency weighted global mean precipitation rate (mm day21) from all
AR/TS/MCS days (see Fig. 6 caption for definition). Similarly, [Pr,h25X ], [Pr,h50X ], [Pr,l50X ], and [Pr,l25X ] denote respectively the
AR/TS/MCS frequency weighted global mean precipitation rate (mm day21) averaged over the 25%, 50% heaviest precipitation,
and the 50%, 25% lightest precipitation AR/TS/MCS days with the numbers in parentheses indicating the percentage of total
AR/TS/MCS precipitation coming from each category of the AR/TS/MCS days.

Observations PRESENT CLIMO P4K (P4K 2 CLIMO)/CLIMO/DTs

Frequency of AR 1 TS 1 MCS days 13.55% 13.08% 13.20% 13.06% 20.26% K21

Frequency of AR days 8.33% 7.58% 7.60% 8.02% 1.22% K21

Frequency of TS days 0.72% 0.99% 0.96% 0.83% 22.86% K21

Frequency of MCS days 4.28% 4.37% 4.64% 4.21% 22.05% K21

[Pr ] (mm day21) 2.84 2.94 2.94 3.32 2.85% K21

[Pr ] from AR 1 TS 1 MCS days 1.53 (53.8%) 1.60 (54.7%) 1.61 (54.8%) 1.86 (56.0%) 3.43% K21

[Pr ] from AR days 0.72 (25.3%) 0.69 (23.6%) 0.69 (23.5%) 0.86 (25.9%) 5.44% K21

[Pr ] from TS days 0.12 (4.1%) 0.17 (5.8%) 0.15 (5.1%) 0.16 (4.8%) 1.47% K21

[Pr ] from MCS days 0.69 (24.4%) 0.74 (25.3%) 0.76 (25.9%) 0.83 (25.0%) 2.03% K21

[Pr,allX ] (X = AR days) 8.62 9.16 9.05 10.7 4.02% K21

[Pr,allX ] (X = TS days) 16.1 17.2 15.8 19.5 5.17% K21

[Pr,allX ] (X = MCS days) 16.2 17.0 16.0 19.4 4.69% K21

[Pr,h25X ] (X = AR days) 19.93 (58%) 22.09 (60%) 21.76 (60%) 26.61 (62%) 4.92% K21

[Pr,h25X ] (X = TS days) 43.37 (67%) 50.02 (73%) 45.53 (72%) 57.83 (74%) 5.96% K21

[Pr,h25X ] (X = MCS days) 33.43 (52%) 43.13 (63%) 40.01 (63%) 51.02 (66%) 6.07% K21

[Pr,h50X ] (X = AR days) 14.13 (82%) 15.28 (83%) 15.06 (83%) 18.07 (85%) 4.41% K21

[Pr,h50X ] (X = TS days) 28.33 (88%) 30.89 (90%) 28.15 (89%) 35.24 (90%) 5.56% K21

[Pr,h50X ] (X = MCS days) 24.86 (77%) 28.85 (85%) 26.93 (84%) 33.53 (86%) 5.41% K21

[Pr,l50X ] (X = AR days) 3.11 (18%) 3.05 (17%) 3.04 (17%) 3.26 (15%) 1.60% K21

[Pr,l50X ] (X = TS days) 3.93 (12%) 3.54 (10%) 3.36 (11%) 3.80 (10%) 2.89% K21

[Pr,l50X ] (X = MCS days) 7.53 (23%) 5.22 (15%) 5.14 (16%) 5.26 (14%) 0.52% K21

[Pr,l25X ] (X = AR days) 1.90 (5.5%) 1.84 (5.0%) 1.84 (5.1%) 1.91 (4.5%) 0.84% K21

[Pr,l25X ] (X = TS days) 2.13 (3.3%) 1.97 (2.9%) 1.93 (3.1%) 2.10 (2.7%) 1.94% K21

[Pr,l25X ] (X = MCS days) 4.95 (7.6%) 2.93 (4.3%) 2.96 (4.6%) 2.86 (3.7%) 20.75% K21
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and microphysical environments in response to global warming.
The dependence of storm-associated precipitation may be
approximated by the following relationship (Muller and
Takayabu 2020):

Pr ∝ 2ev500q850, (3)

where Pr represents AR/TS/MCS-associated precipitation,
v500 denotes the vertical pressure velocity at 500 hPa, q850 is
low-level specific humidity at 850 hPa, and e is precipitation
efficiency. The percentage change of Pr may then be under-
stood through the following decomposition:

dPr

Pr
≈ dv500

v500
1

dq850

q850
1

de

e
, (4)

where the terms on the RHS of Eq. (4) represent the percent-
age changes in Pr due to the dynamic (dv500), thermodynamic
(dq850), and microphysical (de) components. Figures 12a–c
show the geographical distribution of the percentage changes in
v500 averaged from the 25% heaviest precipitation AR/TS/
MCS days. The changes are spatially nonuniform including
large areas of increases and decreases, indicating that changes
in large-scale circulation may be important to regional changes
in storm-associated v500. The global area-weighted (frequency-
weighted) mean changes in v500 are respectively 20.52%
(0.02%), 3.26% (0.38%), and 20.75% (20.03%) K21 for these
AR, TS, and MCS days. Thus, on average, except for TS, the
dynamic contribution to AR- and MCS-associated heavy pre-
cipitation appears to be small. The significant dynamical contri-
bution to TS precipitation is consistent with the increase in TS

intensity with warming (e.g., Liu et al. 2019). By contrast, the
global mean value of dv500/v500 averaged over the 25% lightest
precipitation AR/TS/MSC days exhibits a large reduction (not
shown), indicating its significant role in suppressing AR/TS/
MCS-associated weaker precipitation.

Figures 12d–f show percentage changes in q850 averaged
over the 25% heaviest precipitation AR/TS/MCS days. The
changes are spatially much more uniform than those in v500

with a global mean increase of ∼7% K21, roughly following
the Clausius–Clapeyron (C-C) scaling of atmospheric water
vapor content (e.g., Held and Soden 2006). Compared with
Figs. 11a–c, the results suggest that changes in q850 play a
dominant role in precipitation change of the 25% heaviest
precipitation AR/TS/MCS days, including both their global
means and spatial distribution. Figure 13 further shows that
the change in q850 is primarily due to the changes in lower-
level atmospheric temperature with the regions of larger
increase in q850 corresponding well with the regions of larger
increase in 850-hPa temperature. Thus, the thermodynamic
component (i.e., dq850) is the primary cause of the increase in
AR/TS/MCS-associated precipitation intensity, with the
dynamic and microphysical (residue; not shown) components
playing only a secondary role.

5. Summary

ARs, TSs, and MCSs are fascinating weather phenomena
that are often studied individually or through storm compo-
sites. Despite the notion that each of these phenomena may
contribute significantly to global and regional hydrological

FIG. 9. (a) Geographical distribution of changes in annual mean precipitation rate normalized to per 1 degree
global mean surface air temperature warming (mm day21 K21, global mean surface air temperature warming DTG =
4.53 K) between P4K and CLIMO. (b)–(d) As in (a), but for the changes in precipitation from all AR, TS, and MCS
days, respectively. The global area-weighted mean value is shown on the top of each panel.
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cycles, global-scale investigations of their collective effects
have been lacking due to limited observational coverage,
short data records, and model deficiencies in representing
these events. GCM studies of these weather statistics focus
mostly on the frequency of individual phenomena instead of
their combined effect on global and regional hydrological
cycles. Here we used the latest observational estimates of
global high resolution daily precipitation for the period of
1979–2014 and the newly developed GFDL global high-resolu-
tion model (C192AM4) to provide for the first time a system-
atic quantification of the contributions of ARs, TSs, and MCSs
to global and regional mean and extreme precipitation as well
as their changes in a warmer climate. The results suggest that

despite their occasional (13%) occurrence globally, AR, TS,
and MCS days together account for ∼55% of global mean pre-
cipitation and ∼75% of extreme precipitation, with daily rates
exceeding its local 99th percentile. Regionally, these phenom-
ena account for 80%–100% of extreme precipitation in essen-
tially all parts of the world, where the local 99th percentile of
daily precipitation is large and thus the disaster potential asso-
ciated with the extreme precipitation is high. The model repro-
duces well the observed percentage of mean and extreme
precipitation associated with AR, TS, and MCS days despite a
significant overestimate of the 99th percentile of daily precipi-
tation and the daily precipitation rate averaged over the top
25% of AR/TS/MCS days with the heaviest precipitation.

FIG. 10. Geographical distribution of changes in frequency of the (a) AR, (b) TS, and (c) MCS days (all normalized to per 1° global
mean surface warming; % K21) between P4K and CLIMO. The global area-weighted mean value is shown on the top of each panel.
(d)–(f) As in (a)–(c), but for the percentage changes in daily precipitation rate (i.e., DPr/Pr, normalized to per 1° global mean surface warm-
ing; % K21) averaged over all AR, TS, and MCS days, respectively. The grid cells with total number of AR/TS/MCS days less than 30 in
CLIMO or P4K and the grid cells where DPr is not statistically significant at 95% confidence level (based on Z tests) are masked out. Two
global measures of DPr/Pr are shown on the top of each panel for (d)–(f). The first is the global area-weighted mean DPr/Pr over all
AR/TS/MCS regions. The second is the percentage change in AR/TS/MCS frequency weighted global mean precipitation from all AR/TS/

MCS days—that is, the percentage change in [Pr,allX ] �
�
y

�
x
Pr,allX (x,y)FallX (x,y)dxdy=

�
y

�
x
FallX (x,y)dxdy, where X = AR/TS/MCS days,

and Pr,allX and FallX denote respectively the mean precipitation and frequency averaged from all AR/TS/MCS days at each location (x, y).
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Under an idealized global warming scenario (i.e., uniform
SST warming), the model-simulated changes in geographical
distribution of annual mean precipitation correspond well
with the total changes in precipitation associated with AR,
TS, and MCS days, with the net changes being dominated by
the AR days in the middle and high latitudes and by MCS
and TS days in the tropics and subtropics. Globally, the mod-
eled frequency of AR days increases slightly and migrates
toward higher latitudes while the frequency of TS days tends
to increase over the central North Pacific and part of the
south Indian Ocean with a decrease elsewhere. The frequency
of MCS days tends to increase over parts of the equatorial
western and eastern Pacific warm pools and high latitudes and

decreases over most tropical and subtropical regions with the
largest reduction over the tropical land-covered regions. The
daily precipitation rate averaged over AR, TS, and MCS days
increases by roughly 5% K21, slightly less than the C-C scal-
ing of atmospheric water vapor content. This increase is due
primarily to a larger increase (closer to C-C scaling) in precip-
itation from the 25% heaviest precipitation days, with the
weaker precipitation days exhibiting a much smaller increase
or even a decrease.

This changing character of storm-associated precipitation
has important implications for local hydrology and water
resource management because steady moderate rainfall would
soak into the soil and benefit plants, while heavy rainfall may

FIG. 11. (left) Percentage changes in daily precipitation rate (i.e., DPr/Pr, normalized to per 1° global mean surface warming; % K21)
averaged over the 25% heaviest precipitation (a) AR, (b) TS, and (c) MCS days. The grid cells with total number of the 25% heaviest pre-
cipitation AR/TS/MCS days less than 30 in CLIMO or P4K and the grid cells where DPr is not statistically significant at 95% confidence
level (based on Z tests) are masked out. Two global measures of DPr/Pr are shown on the top of each panel in (a)–(c). The first is the global
area-weighted mean DPr/Pr over the regions of 25% heaviest precipitation AR/TS/MCS days. The second is the percentage change in
global AR/TS/MCS frequency weighted mean Pr from the 25% heaviest precipitation AR/TS/MCS days—that is, the percentage change in

[Pr,h25X ] �
�
y

�
x
Pr,h25X (x,y)Fh25X (x,y)dxdy=

�
y

�
x
Fh25X (x,y)dxdy, where X = AR/TS/MCS days, and Pr,h25X and Fh25X denote respectively

the mean precipitation and frequency averaged from the 25% heaviest precipitation AR/TS/MCS days at each location (x, y). (right) As at
left, but for DPr/Pr averaged over the 25% lightest precipitation (d) AR, (e) TS, and (f) MCS days.
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cause local flash floods and runoff, making soil much drier in
the long term. This change of precipitation characteristics is
also important to the global hydrological cycle and regional
extreme precipitation since it is the 25% heaviest precipitation
AR/TS/MCS days that dominate the increases in global mean
precipitation and the frequency of catastrophic floods in a
warmer climate. Our results suggest that the precipitation
response of the 25% heaviest precipitation AR/TS/MCS days
is dominated by the thermodynamic component, with dynamic
and microphysical components playing a secondary role.

Finally, it is worth noting a few caveats of the present study.
First, the use of uniform SST warming will not be able to

represent the effects of SST warming patterns, which can
strongly affect regional changes in AR/TS/MCS frequency in
a warmer climate (e.g., Villarini and Vecchi 2012; Zhao et al.
2009; Zhao and Held 2012; Zhao 2020). For example, using
CMIP5 models and a statistical downscaling approach, Villar-
ini and Vecchi (2012) demonstrated that the twenty-first-cen-
tury projections of North Atlantic (NA) TSs will depend on the
relative SST warming over the tropical Atlantic. They further
identified the dominant sources of uncertainty in determining
this relative SST warming and how they may evolve during dif-
ferent periods of the twenty-first century. They pointed out large
uncertainties in both internal climate variability and modeled

FIG. 12. (left) Percentage changes in daily 500-hPa pressure velocity (i.e., Dv500/v500, normalized to per 1° global mean surface warming;
% K21) averaged over the 25% heaviest precipitation (a) AR, (b) TS, and (c) MCS days. The grid cells with total number of the 25%
heaviest precipitation AR/TS/MCS days less than 30 in CLIMO or P4K and the grid cells where Dv500 is not statistically significant at 95%
confidence level (based on Z tests) are masked out. Two global measures of Dv500/v500 are shown on the top of each panel in (a)–(c). The
first is the global area-weighted mean Dv500/v500 over the regions of 25% heaviest precipitation AR/TS/MCS days. The second is the per-
centage change in global AR/TC/MCS frequency weighted mean v500 averaged from the 25% heaviest precipitation AR/TS/MCS days—

that is, the percentage change in [v500,h25X ] �
�
y

�
x
v500,h25X (x,y)Fh25X (x,y)dxdy=

�
y

�
x
Fh25X (x,y)dxdy, where X = AR/TS/MCS days and

v500,h25X and Fh25X denote respectively the mean v500 and frequency averaged from the 25% heaviest precipitation AR/TS/MCS days at
each location (x, y). (right) As at left, but for the percentage changes in 850-hPa specific humidity q850 averaged over the 25% heaviest pre-
cipitation (d) AR, (e) TS, and (f) MCS days.
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response in SST warming patterns to radiative forcings through-
out the twenty-first century. Given the complexity of future pro-
jections of regional change in AR/TS/MCS frequency, one
should think of the present study as only one component (i.e.,
global mean SST warming) of the future projection, which must
be superimposed with other equally important components (i.e.,
SST warming patterns and changes in forcing agents). Second,
there are significant uncertainties in detecting these storm sys-
tems (e.g., thresholds used by the detection methods) and com-
puting their associated precipitation (e.g., impacting area and
duration); this may be especially true for MCSs. In addition, the
model also has significant biases in simulating the regional distri-
bution of storm frequencies. For example, the model tends to
overproduce MCS frequencies over the western Pacific and
underestimate them over the equatorial south Indian Ocean.
Although our sensitivity tests indicate this is likely due to the

model’s error instead of the MCS detection method, both the
uncertainties in MCS detection and the model’s ability in repro-
ducing the observed regional distribution of MCS frequency
may affect the model’s future MCS projections, especially at
regional scales. It could also affect the partition of dynamical
and thermodynamic contributions to local changes in MCS-asso-
ciated precipitation. Thus, our results would need to be further
validated and compared with other studies using different mod-
els and different MCS detection methods in the future.
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cmip6/. The Multi-Source Weighted-Ensemble Precipitation
(MSWEP-v2) dataset are available at http://www.gloh2o.org/
mswep/. The ERA-Interim data are available at https://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. The Cloud
Archive User Service (CLAUS) multisatellite infrared bright-
ness temperature dataset is available at https://data.ceda.ac.uk/
badc/claus/data. The International Best Track Archive for Cli-
mate Stewardship (IBTrACS) data are available at https://
www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access.
The AM4 model code is provided at http://data1.gfdl.
noaa.gov/nomads/forms/am4.0/.
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